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Abstract—Mobile crowdsensing has emerged to show elegant
capacity in data collection and give rise to numerous applications.
In the sense of coverage quality, marginal works have considered
the efficient (less cost) and effective (considerable coverage)
design for mobile crowdsensing networks. We investigate the
optimal quality-aware coverage in mobile crowdsensing networks.
The difference between ours and conventional coverage problem
is that we only select a subset of mobile users so that the coverage
quality is maximized with constrained budget. To address this
new problem which is proved NP-hard, we first prove the set
function of coverage quality is nondecreasing submodular. By
leveraging the favorable property in submodular optimization, we
then propose an (1− 1

e
) approximation algorithm with O(nk+2)

time complexity, where k is an integer that is greater than
or equal to 3. Finally, we conduct extensive simulations for
the proposed scheme, and the results demonstrate that ours
outperforms the random selection scheme and one of the state-of-
arts in terms of total coverage quality by at most 2.4× and 1.5×,
and by averagely 1.4× and 1.3×, respectively. Additionally, ours
achieves near optimal solution comparing with the brute-force
search results.

Index Terms—Mobile crowdsensing networks, coverage,
quality-aware sensing, approximation algorithm.

I. INTRODUCTION

The proliferation of smartphones and other mobile devices
embedded with a number of sensors (e.g., accelerator and
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camera), gives rise to a new frontier called mobile crowd-
sensing [1], [2]. In a mobile crowdsensing system, individuals
with sensing and computing devices collectively share data
and extract information to measure phenomenon of common
interest. A growing and important class of crowdsensing
systems are designed to provide place-related information and
focus on locations that participants routinely visit as targets
for collecting and analyzing data. For example, several sys-
tems have been developed for reconstructing floor plan using
crowdsourced images [3], autonomously naming downtown
places [4] or counting the number of individuals of a crowd
[5]. To fulfill these system execution quality and efficiency, the
sensing data (such as images and audio) should be adequate,
available and affordable [6].

Consider an example in downtown places naming [4]. As
the task starts, the recruited users will upload the collected
sensing data (such as images and audio) of places that they
routinely visit (e.g., cafes, shopping malls and offices), to
the crowdsensing center. On one hand, the values of various
places are different, taking the spatial properties of places
into consideration. For example, places like a shopping mall
provide more valuable information than an office for a rec-
ommendation application [7]. Meanwhile, mobile users cover
different number of places along their trajectories. Some of
them, such as graduated students, may stay in the campus of
most of the working time, while others, such as couriers, may
travel to many places during a day [8]. Therefore, how to
quantify the quality of mobile users associated with different
Places of Interest (POIs) becomes a challenge.

On the other hand, to fulfill the system task, the crowdsens-
ing center should adopt the incentive mechanism to recruit
adequate participants [9]. Even worse, there could be a strict
budget constraint, which limits the number of selected mobile
users. Then, the other challenge is how to make use of the
constrained budget to select the qualified mobile users to
achieve good coverage. Besides, the areas where the crowd-
sensing task to monitor, are distributed in an even larger area.
Sensing coverage for the relatively remote area would need
more participants. There should be a tradeoff between the
sensing quality and the number of participants involved.

In response to the aforementioned requirements and chal-
lenges, traditional schemes on coverage [10]–[12] and user
selection [13] in sensor networks can not work well, due to
the specific properties of mobile crowdsensing networks, such
as the dynamic conditions of the set of mobile users [1] and
the variety of POIs. Nevertheless, very little effort has been
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devoted to this new field. One systematic study of the coverage
properties of place-centric crowdsensing is conducted by Chon
et al. [6]. In their study, they discovered some properties of
mobile crowdsensing networks, e.g., the number of places
covered by participants follows a power-law distribution. In
terms of the problem of coverage, a relatively related work was
presented by Wang et al. [14], in which the coverage of photos
obtained via crowdsourcing was investigated. However, the
mobile users are opportunistic, dynamic and sociable, which
is different from the photos.

In this paper, we design an effective and efficient scheme to
achieve considerable sensing coverage in a budget constrained
mobile crowdsensing network. We first propose coverage
quality, to evaluate the quality of the mobile user. It measures
how much weight of POIs to be covered by mobile users.

Then, we deal with challenges brought by the budget con-
straint, which is referred to as the maximum coverage quality
with budget constraint problem, i.e., given a set of mobile
users and POIs, how to select a subset of mobile users such
that the coverage quality is maximized under the constraint of
a predefined budget? To address this problem which is proved
NP-hard, we first prove the submodularity of the set function
of the coverage quality. And then, leveraging the favorable
properties in submodular optimization, we present an (1− 1

e )
approximation algorithm. Finally, we conduct the simulations
to evaluate the performance of our algorithms compared to
other selection schemes.

Particularly, the contributions of this work are summarized
as follows:

• We present the maximum coverage quality with budget
constraint problem in the mobile crowdsensing networks.
To address this NP-hard problem, we first prove that
the set function of coverage quality is nondecreasing
submodular. Then, employing the favorable properties in
submodular optimization, we design an effective, efficient
and near optimal algorithm, where the approximation
ratio is (1 − 1

e ) and the time complexity is O(nk+2) in
which k is an integer that is greater than or equal to 3.

• We evaluate the proposed scheme with extensive sim-
ulations. The results of random-walk-based trace-driven
simulations show that our algorithm achieves the better
performance than the random selection scheme and one
of the state-of-arts [13] in terms of total coverage quality
by at most 2.4× and 1.5×, and by averagely 1.4×
and 1.3×, respectively. Besides, when using real-world
mobility traces, ours also outperforms the other methods.

The rest of the paper is organized as follows. Section II
describes the scenario and system model. The definition and
solution of the maximum coverage quality with budget con-
straint problem are presented in Section III. In Section IV,
we use simulations to evaluate our algorithms. Section V
introduces the related work. Finally, we conclude our work
in Section VI.

II. SYSTEM MODEL

In this section, we describe the scenario that we focus
on and present the system model. We also introduce the
definitions and denote frequently used notations.

Mobile user v1

Mobile user v2

POI p4: Hotel v1's movement trajectory

v2's movement trajectory

POI p5: CBD

POI p6: Shopping

mall

POI p1: Park

POI p3: School

POI p2: Gym

rs

Fig. 1. Scenario and model.

A. Scenario and Model Description

We consider that, the crowdsensing center distributes the
task that collects the information of the logical Places of
Interest (POIs) (such as a restaurant and a user’s home) to the
mobile users who own sensor-enabled mobile devices. The set
of POIs are denoted by P = {p1, p2, ..., pm}, where m is the
number of POIs. Let P⃗ = {p⃗1, p⃗2, ..., p⃗m} be the locations of
P , where each single POI includes a 2D location information
p⃗i = {xi, yi}. Particularly, the crowdsensing center allocates a
predefined weight wpi for the POI pi, taking the various values
of different POIs into consideration, and correspondingly, the
set of weights for P is W = {wp1 , wp2 , ..., wpm}. Namely,
we consider the spatial properties of POIs, to improve the
sensing coverage. The weight of a POI indicates how much
useful information can be provided by this POI. For example,
places like a shopping mall or a restaurant could provide more
valuable information than a residence or a workplace, for most
of crowdsensing applications, such as Jigsaw [3] and a place
naming system presented in [4].

Meanwhile, we assume that there are n candidate users, and
the user set is given by V = {v1, v2, ..., vn}. The locations
of user vj could be denoted as l⃗vj = {xvj , yvj}. Each
mobile user has an arbitrary movement trajectory, and visits
different places along the trajectory. Once the mobile user is
close enough to the POI, we consider that a POI is properly
covered if it could be identified (or detected) by analyzing
multi-modal sensing data (such as images and audio) [6].
The sensing data could be directly uploaded by participants
through cellular networks. When the monitoring areas are not
covered by cellular network (e.g., 3G), the sensing data could
be forwarded using opportunistic networks in a delay tolerant
manner via short-range communications, such as Bluetooth
and WiFi. Formally, let rjs be the user vj’s sensing range, and
we regard that a POI pi is covered by a mobile user vj if and
only if the POI is in the sensing range of this mobile user, i.e.,

||⃗lvj − p⃗i|| ≤ rjs

. Let fvj (pi) represent whether a mobile user vj covers a POI
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pi or not, i.e.,

fvj (pi) =

{
1 pi is covered by vj

0 otherwise

We note that fvj (pi) is independent of how many times a POI
pi is covered by vj . The set of POIs covered by the user vj is
given by Cvj = {pi : fvj (pi) = 1, ∀pi ∈ P}. Accordingly, the
set of POIs covered by all mobile users V is CV =

∪n
j=1 Cvj .

Fig. 1 illustrates the scenario and our model. {p1, p2, p3}
and {p4, p5, p6} are covered by two mobile users v1 and v2,
respectively. The crowdsensing center could select these two
mobile users to collect the information (such as sensing data
and location-based social media data) from those POIs [6].

B. Coverage Quality

Different from traditional sensor networks [15] [16], the
users with mobile sensing devices are endowed with uncertain
but better mobility in a mobile crowdsensing network, which
imposes new challenges on assessing the quality of the mobile
user in terms of coverage. For instance, for a place naming
system [4], the platform wants to name a variety of urban
places online, and so it prefers to recruit the mobile users who
are capable of covering more distinct places. For a location-
based recommendation system [17], places such as a shopping
mall and a cafe provide more recommendable information, and
so, the mobile users who often visit such places tend to be
selected by the mobile crowdsensing platform.

In dealing with above challenges, we measure the quality
of the mobile user in terms of coverage by coverage quality.
The coverage quality of each mobile user is independent,
only associated with the movement trajectory in which the
mobile user could visit different POIs. The formal definition
of coverage quality is defined as follows.

Definition 1: (Coverage Quality): Given a POI pi and a
mobile user vj , the coverage quality of vj on pi, denoted by
Uvj (pi), is the weight of pi covered by vj , i.e., Uvj (pi) =
wpifvj (pi).

Then, the coverage quality of a set of mobile users V
′
=

{vj : 1 ≤ j ≤ k} respecting to POI pi is the total weights
of pi covered by the mobile users of V

′
, i.e., UV ′ (pi) =∑k

j=1 Uvj (pi).
Finally, the total coverage quality of the mobile users

regarding all POIs P = {p1, p2, ..., pm} is the sum of
the coverage quality respecting to each POI. By dividing
the total number of POIs, it is normalized as UV ′(P ) =
1
m

∑m
i=1 UV ′ (pi).

For example in Fig.1, there are two participants v1 and
v2 with different movement trajectories respectively, and six
places of interest P = {p1, p2, p3, p4, p5, p6} with the weights
{wp1 , wp2 , wp3 , wp4 , wp5 , wp6}. The coverage quality of v1 is
Uv1(Cv1) =

1
3 (wp1+wp2+wp3), which is different with that of

v2, Uv2(Cv2) =
1
3 (wp4 +wp5 +wp6). Then, the total coverage

quality of these two mobile users regarding all six POIs is,
Uv1,v2(Cv1 ∪Cv2) =

1
6 (wp1 +wp2 +wp3 +wp4 +wp5 +wp6).

III. MAXIMUM COVERAGE QUALITY WITH BUDGET
CONSTRAINT

In this section, we describe the maximum coverage quality
with budget constraint problem, and present corresponding
algorithm to address it.

A. Problem Statement
In practical scenarios, the budget of the crowdsensing center

to recruit participants is limited, determining the number of
mobile users that could be selected. Intuitively, the budget
could be directly represented by the reward. The crowdsensing
center should pay some rewards to motivate participants for
sensing tasks. We assume the set of mobile users V =
{v1, v2, ..., vn} is associated with different costs {b(vj)}nj=1.
The total cost of selecting mobile users should not exceed a
given budget B. We define the problem as follows.

Definition 2: (Maximum Coverage Quality with Budget Con-
straint Problem): Given a set of m POIs P = {p1, p2, ..., pm}
and n mobile users V = {v1, v2, ..., vn}, and also given a
predefined budget B(> 0), the maximum coverage quality
with budget constraint problem asks for a subset S (S ⊆ V ),
such that the total cost of S is less than B, i.e., b(S) =∑

vj∈S b(vj) ≤ B, and the total coverage quality of the
selected users’ US(P ) is maximized.

Formally, the optimization problem is given by:

max
S⊆V

US(P ), subject to b(S) ≤ B.

Solution overview: In tackling the problem, we first claim
that the problem could be transformed to the budget maximum
coverage problem which is proved NP-hard [18]. Then, we
prove that the set function of the total coverage quality US(P ),
given the set of selected mobile users S and the set of POIs P ,
is nondecreasing submodular. Finally, leveraging the favorable
properties of submodular optimization [19], we present an (1−
1
e ) approximation algorithm for the problem.

B. Conversion to Budgeted Maximum Coverage
Refer to [18], the budgeted maximum coverage problem is

defined as follows. A collection of sets S = {S1, S2, ..., Sn}
with associated costs {bi}ni=1 is defined over a domain of ele-
ments X = {x1, x2, ..., xm} with associated weights {wi}mi=1.
The goal is to find a collection of sets S ′ ⊆ S , such that the
total cost of elements in S ′

does not exceed a given budget B
and the total weight of elements covered by S ′

is maximized.
To transform to above problem, without loss of generaliza-

tion, given a POI set P , we first consider a single mobile user
vj that covers a subset of POIs Cvj = {pi : fvj (pi) = 1, ∀pi ∈
P}. Then, a collection of cover set for all mobile users is
C = {Cv1 , Cv2 , ..., Cvn} with associated costs {b(vj)}nj=1.
The coverage quality of each user Uvi is associated with the
predefined weight of POIs, in which a domain of elements
(i.e., POIs) P = {p1, p2, ..., pm} is associated with W =
{wp1 , wp2 , ..., wpm}. Accordingly, the simple corresponding
relation between these two set systems is C −→ S, P −→ X ,
and the targeted set S −→ S ′

, respectively. Therefore, the
proposed problem could be reduced to the budgeted maximum
coverage problem, which was proved to be NP-hard [18].
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C. Submodularity

To solve above problem, we prove that the set function of
the coverage quality is nondecreasing submodular, such that
we could leverage the favorable property in submodular op-
timization. Before presenting the proof of the submodularity,
we first provide preliminary knowledge on the submodular set
function.

Definition 3: Given a finite set E, a real-valued function
f(·) on the set of subsets of E is called submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ E

We often make use of the incremental value of adding element
u to a set A, e.g., let ρu(A) = f(A ∪ u)− f(A). Besides, if
the function satisfies the diminishing returns rule, it is called
submodular. That is, the difference from adding an element u
to a subset A is at least as large as the one from adding the
same element to a superset B of A:

f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B)

for all element u and all pairs A ⊆ B. Furthermore, f(·) is said
to be nondecreasing if f(A) ≤ f(B),∀A ⊆ B ⊆ E. Lovász
has shown that submodular functions could be understood as
set functions with convexity [20].

Based on above preliminaries, we acquire the following
lemma and further give its proof.

Lemma 1: Given a set of POIs P and a subset of mobile
users S (S ⊆ V ), the set function of the coverage quality
US(P ) is nondecreasing submodular.

Proof: It is straightforward that U∅(P ) = 0. Consider
V ’s two arbitrary subsets S and S

′
, S ⊆ S

′ ⊆ V , we have
US(P ) ≤ US′ (P ) (the equality holds if CS′−S = ∅) and so
US(P ) is nondecreasing.

Consider a mobile user u ∈ V − S
′
, |CS∪{u}| − |CS | is

the number of covered POIs in Cu that are not in the CS . we
note that

∪
vj∈S′ Cvj is at least as large as

∪
vj∈S Cvj . The

coverage quality US(P ) is associated with the sum of weights
of POIs in CS , we then have

US∪{u}(P )− US(P ) ≥ US′∪{u}(P )− US′ (P )

. It is satisfied with the diminishing returns rule in which the
difference from adding an element to a set S is at least as
large as the one from adding the same element to a superset
S

′
of S [21], and hence US(P ) is submodular. As a result,

US(P ) is nondecreasing submodular with U∅(P ) = 0.

D. Approximation Algorithm

Motivated by the submodular property of coverage quality
[19], we propose an approximation algorithm to address the
problem with guaranteed performance, as Algorithm 1 shows.
The algorithm uses enumeration technique partially and then
leverages greedy heuristic, so as to obtain better approximation
ratios and output the candidate solution having the greatest
coverage quality.

We note that let G be a subset of V , and k be some
fixed integer in Algorithm 1. We consider all subsets of V of
cardinality of k which have cost at most B, and each subset
is completed to a candidate solution using greedy heuristic.

Another set of candidate solution contains all subsets of V of
cardinality less than k which have cost at most B. Concretely,
Algorithm 1 first enumerates all subsets of up to k users for
some constant k > 0, and then complements these subsets
using the modified greedy algorithm (line 4-9).

Algorithm 1 Approximation Algorithm for Maximum Cover-
age Quality with Budget Constraint Problem
Input:

PoI set P and its weight set W , candidate user set V , and
a predefined budget B

Output:
The target subset S, S ⊆ V

1: H1 ← argmax {UG(P ), such that G ⊆ V, |G| < k, and
b(G) ≤ B}; H2 ← ∅

2: For all G ⊆ V , such that |G| = k, and b(G) ≤ B do
3: M ← V \G
4: Repeat
5: select vj ∈M that maximizes

Uvj
(Cvj

−Cvj
∩CG)

b(vj)

6: if b(G) + b(vj) ≤ B then
7: G← G ∪ {vj}
8: M ←M \ {vj}
9: Until M = ∅

10: if UG(P ) > UH2(P ) then H2 ← G
11: End For
12: If UH1(P ) > UH2(P ), S ← H1, otherwise, S ← H2

Theorem 1: For k ≥ 3, Algorithm 1 achieves an approxima-
tion ratio of (1− 1

e ) for the maximum coverage quality with
budget constraint problem, i.e.,

US ≥ (1− 1

e
)UOPT for k ≥ 3

where UOPT is the optimal value of the total coverage quality
that can be achieved by any user set S.

Proof: The coverage quality derives from the weight of
POIs covered by selected users, and it is maximized iff the
corresponding subsets has the maximum total weight. Accord-
ing to the theorem presented in [18], the subsets selected by
Algorithm 1 yield a total weight that is at least (1− 1

e ) times
the optimal value for k ≥ 3. As a result, the total coverage
quality of the selected user set has a lower bound by (1− 1

e )
times the maximum total coverage quality. (The reader could
refer [18] for detailed proof.)

Complexity analysis: At first, straightforwardly, the enu-
meration of all subsets of V (line 2) takes O(|V |k) time.
Then, using the modified greedy selection (line 4-9) takes
O(|V |2) time. Since the greedy selection is embedded into
the enumeration part, associated with these two parts, the time
complexity of the algorithm is given by:

O(|V |k × |V |2) = O(|V |k+2) = O(nk+2)

. Therefore, the time complexity of our algorithm is O(nk+2),
where k is an integer that is greater than or equal to 3.
For Algorithm 1, If sets at least up to cardinality k = 3 are
enumerated, it achieves an approximation guarantee of (1− 1

e ).
However, the complexity of the proposed algorithm increases
with increasing k.
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Fig. 2. Simulation scenario. The colored lines and the cyan circles represent
the trajectories of mobile users and the POIs, respectively (ten mobile users
and fifty POIs).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed
algorithm, and present the results of trace-driven simulations
using both synthetic random-walk-based trace and real-world
mobile traces. Moreover, we make analysis on these evaluation
results.

A. Random-walk based Simulation

1) Simulation Settings: We create a simulator in Matlab
to generate synthetic random-walk based mobility traces.
We set different numbers of mobile users and POIs in a
3000m × 3000m square field. POIs are assumed to be ran-
domly distributed in the field. Each mobile user performs the
random walk. The walking speed is set to 1.5m/s, and the time
interval for direction changing is set to 100s. For simplicity,
when the POI is in the user’s sensing range, say, rs = 45m
(e.g., detecting a noise source) [10], this POI is recorded by
the user. The traces record each user’s ID and the covered
POIs. Fig. 2 illustrates our simulation scenario, in which 10
trajectories (the colored lines) are generated by random walk
of the users, and 50 POIs (labeled with cyan circles) are
uniformly distributed in the setting area. In the simulations,
we randomly allocate the weight to each POI, as well as the
cost to each mobile user, according to a uniform distribution.
We obtain the simulation results by averaging the evaluation
results in 50 different instances.

We use the random selection algorithm (denoted by Ran-
dom) and the method proposed by Kuo et al (denoted by
Kuo’s) [13], for comparison. In the random selection algorith-
m, the mobile user are randomly selected into the target user
set. In Kuo’s scheme, due to the connection constraint, we set
the rc = 70m (a typical communication range for commonly
mobile devices) as the communication range of each mobile
user in the simulation scenario. Two mobile user are connected
as long as they come into each other’s communication range.
When performing our algorithm (denoted by Proposed) in the
simulation, the parameter k (defined in Algorithm 1) is set to
be 3, for enhancing the efficiency of the algorithm.

2) Simulation Results: The primary concern we need to
evaluate is the impact of the budget constraint B on the total
coverage quality. Intuitively, the bigger the given budget, the
larger the total coverage quality. We note that the budget is
normalized for better presentation. As Fig. 3 shows, both our
algorithm and the random selection achieve more coverage
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Fig. 3. Impact of the budget, B, on the total coverage quality. (n = 10 and
m = 50)
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Fig. 4. Impact of the number of mobile users, n, on the total coverage quality.
(B = 0.5 and m = 50)

quality as B increases. For better comparison, we also show
the results of brute force selection (denoted by Optimal) as
a upper bound of the total coverage quality. The difference
between the total coverage quality achieved by ours and the
best achievable level is small, say, 4.1% on average. The
performance improvement achieved by our algorithm is sig-
nificant compared to the random selection and Kuo’s method.
That is, our algorithm outperforms the random selection and
Kuo’s method in terms of total coverage quality by at most
140.4% and 50.2%, and by averagely 40.6% and 38.9%,
respectively. The connection constraint in Kuo’s method limits
the amount of selectable mobile users, resulting in the decrease
of total coverage quality, compared to our scheme.

We then evaluate the impacts of the number of mobile
users n on the total coverage quality. While other factors
including budget (B = 0.5 and m = 50) remain unchanged,
the total coverage quality increases with increasing the number
of mobile users, as shown in Fig. 4. However, the increase gap
is becoming small as the number of mobile users increases.
Again, our algorithm outperforms the random selection and
Kuo’s scheme by at most 38.9% and 60.7%, and by 27.4% and
33.2% on average, respectively. Besides, Fig. 5 shows how the
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(B = 0.5 and n = 10)

total coverage quality changes as the budget and the number
of mobile users jointly increase. The total coverage quality
escalates to the maxima with increasing both the budget and
the number of mobile users.

Moreover, the impacts of the number of POIs m on the total
coverage quality is evaluated. We set the budget B = 0.5
and the number of mobile users n = 10. From Fig. 6, we
observe that the total coverage quality increases slightly as
the number of POIS increases, using the three comparative
methods. Still, our algorithm achieves better performance than
both the random selection and Kuo’s method.

Finally, we introduce a metric to measure the efficiency of
different selection schemes. Given the set of selected mobile
users S and POIs P , the efficiency η is defined as the ratio
between the coverage quality US(P ) achieved by S and the
sum of cost b(S) for recruiting S, i.e., η = US(P )

b(S) . As
shown in Fig. 7, for both our algorithm and the random
selection, the efficiency increases with increasing the number
of mobile users. Our algorithm achieves bigger improvement
of the efficiency than the random selection, by at most 44.1%
and 32.4% on average. The rationale lies in that, recalling
Algorithm 1 (specially, line 5), it greedily selects the mobile
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Fig. 7. Impact of the number of mobile users, m, on the efficiency. (B = 0.5
and m = 50)

user whose efficiency is maximized into the target user set,
and hence the total efficiency is maximized.

B. Real-world Trace-driven Simulation

1) Simulation Settings: To further evaluate our proposed
user selection method, we conduct real-world trace-driven
simulations based on two mobile datasets collected from
NCSU and New York city (denoted by NCSU and NewYork
respectively) [22] [23]. In NCSU and NewYork datasets, there
are respectively 35 and 39 daily trajectories that are collected
by recruited participants who are equipped with GPS hand-
held receivers. In the simulations, we map these two mobility
traces into two dimensional regions, as Fig. 8.

To perform our algorithm in trace-driven simulations, we
capture POIs from the Google Map based on the constructed
regions and the real sites of NCSU campus and New York
city (concretely, Manhattan and its vicinity). In particular, to
measure the impact of distinct POI, we allocate the weight
for each POI according to two different distributions, namely,
uniform and power-law distributions. We note that [6] have
revealed that the relation between the places of interest and
the number of mobile users followed a power law distribution.
Furthermore, we compare our algorithm with the random
selection scheme. The simulation results are obtained by
averaging the evaluation results in 50 different instances.

2) Simulation Results: We first measure the impact of the
budget, B, on the total coverage quality. The number of POIs
are m = 50 and m = 100 in NCSU and NewYork dataset,
respectively. As shown in Fig.9, the total coverage quality
increases with increasing budget for these two approaches.
Besides, our algorithm outperforms the random selection in
terms of the total coverage quality. When the budget is low
(< 0.5), the total coverage quality is bigger when using power
law distribution than that when using uniform distribution,
especially for our algorithm. The reasons are that the majority
of weight is dominated by few POIs when using power law
distribution, and our algorithm tends to select the mobile users
who visit these POIs.

We then evaluate the impact of the number of POIs, m, on
the total coverage quality, where the budget B and the number
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Fig. 8. Mapping trajectories extracted from mobile datasets NCSU and NewYork into a two dimensional region.
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Fig. 9. Impact of the budget, B, on the total coverage quality using mobile datasets NCSU and NewYork respectively.

of mobile users n are set to be 0.5 and 10. The results in
Fig.10 are similar to that in Random-walk based simulations.
The proposed algorithm achieves better performance than the
random selection for using both NCSU and NewYork datasets.

V. RELATED WORK

Mobile crowdsensing [1], [2], [24]–[27] is a promising
frontier, where individuals with sensing and computing devices
(e.g., smartphone, tablet and in-vehicle sensor) collectively
share data and extract information to measure phenomenon
of common interest. A growing class of mobile crowdsensing
systems are place-centric, designed to provide place-related
information. Meanwhile, previous localization techniques [28],
[29] help us target the places that provide fruitful information.
A number of prototypes have been developed, for example,
Jigsaw has been designed for reconstructing floor plan [3],
and SecureFind is a privacy-preserving object finding system
via mobile crowdsensing [30]. Another instances include an
autonomous place naming system [4] and a crowd counting
application [5].

One fundamental problem in mobile place-centric crowd-
sensing is how to select the qualified users to achieve consid-
erable coverage of places of interest. Also, coverage is a key
issue associated with the quality of sensing [31]. Coverage is
also one of the most import issues (e.g., routing [32] and data
delivery [33]) in traditional wireless sensor networks. Despite
numerous researches on traditional coverage (such as area
coverage [10], [12], [34]–[36] and barrier coverage [11], [37],
[38]) and user selection [13] [39], very little effort has been
devoted to this new field. One systematic study of the coverage
properties of place-centric crowdsensing has been conducted
by Chon et al. [6]. Based on the deployment experiences and
analysis of the collected dataset, they revealed the relationship
between the user population and coverage of places of interest,
i.e., the number of place covered by participants follows a
power-law distribution. Their work inspires us to study the
maximum coverage utility and user selection problem for
mobile place-centric crowdsensing. In terms of the problem
of coverage, a relatively related work is SmartPhoto [14],
in which the coverage of photos obtained via crowdsourcing
was investigated, and three optimization problems including
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Fig. 10. Impact of the number of POIs, m, on the total coverage quality using mobile datasets NCSU and NewYork respectively(the budget B = 0.5).

maximum photo utility, online maximum photo utility, and
minimum selection problem have been studied. However, our
scheme focuses on selecting qualified sensing data with budget
limitations. Specifically, this work proposes a quality-aware
design, where the covered areas are evaluated with weights.
Zhang et al. [40] have proposed a participants selection
framework named CrowdRecruiter for mobile crowdsensing.
CrowdRecruiter aims to minimize incentive payment while
satisfying probabilistic coverage constraint. In contrast, we
aim to maximize the place-centric sensing coverage with a
predefined budget constraint. Zhao et al. [41], recently have
proposed an energy-efficient opportunistic coverage scheme
for people-centric urban sensing [42]. In their work, the human
mobility features were exploited to construct an opportunistic
coverage model and design an offline user selection scheme.
While their work cares more about the trade-off between
energy consumption and coverage, ours explores both the
diversity of places of interest and the spatial property of human
involved.

VI. CONCLUSION

In this paper, we investigated the coverage problem in the
mobile crowdsensing network. In particular, we studied how
to select a set of mobile users so that we could maximize
the total coverage quality with budget constraint. In tackling
the problem, we have proved the submodularity of the set
function of coverage quality with respect to the weights
of POIs covered by mobile users. Then, we presented an
(1 − 1

e ) approximation algorithm for the problem. Finally,
we conducted trace-driven simulations with synthetic random-
walk-based mobility traces to evaluate the performance of our
algorithm. The simulation results validated our algorithms, and
showed that it outperforms the random selection algorithm and
the state-of-art.

In the future, we plan to study how to leverage the temporal-
spatial properties of both the mobile users and the POIs
to improve the coverage of mobile crowdsensing networks.

Moreover, we would like to conduct the systematic imple-
mentation using our algorithm.
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